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Isolation theorems for the minima of factorizable homogeneous ternary cubic forms and of in-
definite ternary quadratic forms of a new strong type are proved. The problems whether there
exist such forms with positive minima other than multiples of forms with integer coefficients are
shown to be equivalent to problems in the geometry of numbers of a superficially different type.
A contribution is made to the study of the problem whether there exist real ¢, ¥ such that
x|¢x—y| |Yx—z| has a positive lower bound for all integers x>0, y, z. The methods used have
wide validity. '

NorATION

Matrices are denoted by Gothic capitals D, 3, T, etc., where J is the unit matrix.
Lattices are denoted by A, M and their (common) determinant by A.
Regions of space are denoted by script capitals Z, & .
Numbers and functions are denoted by small Greek or large or small Latin letters
indifferently. We have endeavoured to retain conventional notation as far as possible.
Co-ordinate systems in three-dimensional space are denoted interchangeably by (x,, z)
or (x,, %5, %5) according to convenience.

1. INTRODUCTION

Suppose that f(x,, ...,%,) is an algebraic formt of some specific type—a quadratic or a

product of linear forms, for example. For any ¢>0 we define an ¢-neighbourhood of f as

the set of forms f* which are of the same type as f and whose coefficients lie within ¢ of the

corresponding coefficients of f. Any set which contains some ¢-neighbourhood will be

called a neighbourhood. The formalization of these concepts, which are obviously closely

akin to the definition of Mahler (1946) for lattices, presents no difficulty; but there are two
1 The term ‘form’ is taken throughout this paper to imply homogeneity.
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74 J. W. S. GASSELS AND H. P. F. SWINNERTON-DYER

points which it is important to note. We have a wide choice of possible representations of f;
thus the representations

6x2-+5xy—6y2,  (2x+3y) (3x—2¢), 6(x+3y) (x—3y),

where in the third case only 6, 3 and £ are regarded as coeflicients which one is permitted
to vary, lead to the same set of neighbourhoods of /. Again, the neighbourhoods of xyz as
a product of three linear forms, for example, are simply the intersection of its neighbourhoods
as a ternary cubic form with the set of all products of three linear forms.

An important part in the geometry of numbers is played by the so-called local isolation
theorems, of which the following is a typical example due to C. A. Rogers (unpublished).

THuEOREM 1. Let f(x,y) be an indefinite binary quadratic form with integer coefficients which does

not represent zero, so that
m = min’ | f(x,y) |>0.

Suppose that f takes both the values +m and —m. Then there is a neighbourhood of f and an m’ <m
such that, for every f* in the neighbourhood which is not a multiple of f,

min’ | f*(x,y) | <m'.

The first purpose of this paper is to show that a surprisingly stronger result holds for the
product of three linear forms in three variables:

TuEOREM 2. Let f(x,y,2) = L, L,Ly be the product of three real linear forms which represent
zero only trivially,} and suppose that f has integer coefficients. Let (8, 0,) be any open interval however
small. Then there is a neighbourhood of f such that all forms f* in the neighbourhood which are not
multiples of f itself take some value in the interval (8,,0,).

In particular, to any given 0> 0 we can choose a neighbourhood in which

min’ | f*(x,y,z) | <0.

Moreover, there is nothing in theorem 2 analogous to the special requirement in theorem 1
that fshould take both the values +m and —m. We have stated, and shall prove, theorem 2
for neighbourhoods in the set of products of three linear forms. It continues to hold for
neighbourhoods in the set of all ternary cubic forms. The proof, by the methods of this
paper, involves no point of real difficulty; we do not, however, give it, since it involves a
tedious division into cases and we cannot conceive that the result will ever be of value to
anyone. '

The neighbourhood of f is obtained by making small variations of the coefficients in
L, L, L,. Ifwe are allowed to vary only two of the forms we obtain the stronger result:

THEOREM 3. Let Ly, Ly, L, satisfy the conditions of theorem 2, and let L¥, L¥ be any real linear
JSorms such that L} L¥ is not a numerical multiple of L, L. Then the set of values taken by L, L¥ L¥ is
everywhere dense in (—o0, 00).

1+ We use ‘min’ to indicate a greatest lower bound, and are not concerned whether or not it is attained.
For reasons of typography, we use ‘min’’ to denote a min taken over all integer values of the variables not

all zero.
1 ILe. only when x =y =2z =0, in accordance with accepted terminology.
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PRODUCT OF HOMOGENEOUS LINEAR FORMS 75
It is trivial that if f or a multiple of it satisfies the conditions of theorem 2, then
min’ | f(%,7,2) |>0. '

It is an unsolved problem whether these are the only products of three linear forms with
this property. The second object of this paper is to prove the equivalence of this problem with
another superficially quite different—though equally intractable. We state

Hypotuests A. There exist real linear forms Ly, Ly, Ly in %, y, z such that L, L,Lq is not a
multiple of a_form with integer coefficients, for which min’ | Ly L, Ly | = 1.

Hyeotuests B. There exist real linear forms My, My, M, in x, y, z such that
min’ min {| M, M, M; |, | M, My(M,+M;)|}=1,
where min’ is as usual and min is over the two numbers given.

Hyporngsis C. There exist real ¢,  such that
min | x(gx—y) (Y2 —2)| >0,

where the min is taken over all integers x=+0,y, z.

We have for convenience stated all three of these in an affirmative form; we tend rather
to believe, however, that they are all false. Certainly the most natural way of trying to
satisfy A, by analogy with the binary case, would be to take L,, L,, Ly as suitably chosen
non-conjugate forms in the same totally real cubic field ; and we know from theorem 3 that
this cannot be effective. Hypothesis C represents a classical problem of Littlewood’s,
which he expressed in the equivalent form

limn | sin7wgn sinmyn | >0.
o
It is well known that ) i
limn|sinmgn | = 0
P~y

for almost all ¢, which would tend to suggest that C is false; on the other hand, for any

given >0, lim n!*¢ | sin 7r¢n sinmyn | = o0

n—>o

for almost all pairs ¢, . We are indebted to Professor Littlewood, to whom this result is
due, for permission to publish his proof. It will be found in appendix A.

‘THEOREM 4. Hypotheses A and B are equivalent. Moreover, if they are both true the lower bound
of the determinant of forms L, L,, Ly satisfying A is the same as that of the determinant of forms
M,, M,, M, satisfying B.

THEOREM 5. If A is false then for any D, however large there are only a finite number of inequi-
valent sets of forms L, Ly, Ly with determinant <D, such that

Here two sets of forms are considered equivalent if the corresponding products L, L, L,
can be transformed one into the other by an integral unimodular transformation on #, y, z.

THEOREM 6. C implies both A and B.

10-2
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76 J. W. S. CASSELS AND H. P. F. SWINNERTON-DYER

TrEOREM 7. If C s true, then ¢ and  cannot be two elements of the same cubic field.

With certain modifications, our methods may be expected to apply to all forms whose
group of automorphisms is sufficiently large. We therefore prove the analoguest of theorems
2, 4 and 5 for indefinite ternary quadratic forms. The proofs do, however, involve consider-
able extra difficulties, principally because the group of automorphisms of the forms is no
longer commutative. For binary quadratic forms the analogue of theorems 2 and 8 is
clearly false. On the other hand, the argument leading to theorems 3 and 9 remains valid.
We know from the theory of the Markoff chain that the analogue of hypothesis A is true and
that the lower bound of the determinant of admissible forms L,, L, is 3. We deduce that the

star body min{| XY |, | X(X+7)[}<1,

in the plane, is of finite type and has critical determinant 3. It might be 1nterest1ng to have
a direct proof of this by the methods of the geometry of numbers.

Itis perhaps worth remarking that if A and B and the corresponding hypotheses D and E
below for indefinite ternary quadratic forms are false, then theorems 5 and 10 show that the
chains of minima obtained by Davenport (1943) for ternary cubics and by Venkov (1945)
and Oppenheim (1953) for indefinite ternary quadratics, may be carried arbitrarily far at
the expense of a correspondingly great but strictly finite amount of computation.

We remark finally that hypothesis A would follow if there existed homogeneous ternary
linear forms N,, N,, N, such that min’ | N,(N,N;+N2)| = 1, as can be proved by our
methods. The problem of the existence of such forms N, N,, N; has been raised by
Davenport & Rogers (1949).

Professor Davenport has done much to render this account 1ntelhg1ble

2. PRELIMINARIES TO PROOF OF THEOREM 2
The proof of theorem 2 is based on the following variant of Kronecker’s theorem, the
relevance of which will soon be apparent.

LemMa 1. Leta, f, 7, 8 be constants with «d— fy==0. Suppose that a/f is irrational. Then to every
7> 0 there is a 0 = o (1,0, f, 7, 0) with the following property:
For any A there are integers m, n such that

|ma+n,6’~A|<T, | my+nd|<o.

It is not difficult to deduce this from Kronecker’s theorem but we give an independent

proof.
By Minkowski’s linear forms theorem and the fact that «/f is irrational there are integral
m, n such that ma+nf is arbitrarily small but non-zero. Let

0<|matmf|<r, 0<|myatnf|<7,

mny—myn,; +0,
and put X; =ma+npf, Y;=myy+nd (j=1,2),
s0 1X,|<r (j=1,2), XY,—X,Y 0.

t Theorems 8, 9 and 10, stated respectively in §§ 9, 10 and 11. We are unable even to state any analogue
to theorem 3 or hypothesis C.
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PRODUCT OF HOMOGENEOUS LINEAR FORMS 71

Let u, v be the solutions of
uX,+vX, = A, u¥,+vY,=0,

and choose integers a, b such that

la—u|<}, |b—v|<E

Then [aX,+0X,—A|<3(| X, |+ ]| X, |) <7
and |aly+0Y, | = | (a—u) Y+ (b—2) T, | <o,
where o =3[+ ]).

Since aX, + bX,, aY, +bY, are respectively the values taken by ma +nf, my + nd for

m = am;+bmy, n=an,+bn,,
this proves the lemma.

We now consider theorem 2. It is known (Bachmann 1923) that if L, L, L, has integer
coeflicients and does not represent zero, then there are constants A;, 15, A5 such that ;1,4

. . 1 .
is integral and NL = ax+fy+yz (1=1,2,3),

where «;, £, 7, are linearly independent integers of a totally real cubic field K, and
g, fas Vas &3, B3, V3 are their respective conjugates in the conjugate fields K,, K. Itis therefore
enough to prove theorem 2 in the special case

Ly = a;x+Biy+7v;2.
We may now take L,, L,, L, as our new variables, writing
J* = (1+e) LYLF L,
with L¥ = Ly +¢5Ly+65Ls,
LY = ey L+ Ly+ep3 Ly,
LY = e Ly+e55Ly+ Ls.

As may readily be verified, the neighbourhoods of f may be given by bounds on ¢, and the
six ¢;;. We note that f* is a multiple of f'if and only if all the ¢;; vanish.

It follows from the theory of units of algebraic number fields (Bachmann 1923), that
there are two independent units 7, {; of K, with conjugates 7,, {,; 73, {; such that for each
pair of rational integers m, n the transformation \

P8 Li(x,y,z) = Li(«',y',2')  (j=1,2,3)

is an integral unimodular transformation from x,y, z to «',y’,z’. Thus if the three forms
take simultaneously the values L; = £; for some integers #, , z, they also take simultaneously
the values L; = 57 {#¢;. To make /* small, as we shall wish to do, we shall consider numbers
of this form with suitably chosen m, n. Replacing 7, {; by #%, {%if necessary, we may assume

7;>0, §>0 (j=1,2,8);  mnens =G0 =1.

We now recast lemma 1 in a more convenient form.
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LemMA 2. To every o> 0, however small, there is a D = D(w,y,{) with the following property:
If Y is given, 0 <<ty <1, then there are integers m, n depending on © and , such that

0; =78 (j=1,2,3)
| 0, =0, | <wb),
Yi0,<D6; [i,j =1,2,3; (i,5) +(2,1)].
We apply lemma 1 to

satisfies simultaneously

am~+pn =1n0,0;' =mlng,p3'+nln G,
ym+0n =1In6,0, =mlny,n,+nlng (.

We note-that «/f is irrational; for otherwise we could choose integers (m, n) == (0, 0) such
that am+ fn = 0; thatis, §, = 6,. But now §,, being equal to its conjugate, must be rational,
and, being a unit, must be 1; and this contradicts the original assumption that 7, { were
independent units.

If in lemma 1 we now take (assuming w<1)

A=y, 7=In(1+w),
we obtain immediately

l1—ow<(l40)'<yb,0i'<l+o, ¢ 1<6,0,<c,
where ¢ = ¢(w, 5,{) = exp ¢ is independent of . But these give
cH140) gt <, <c(1+o0)t g,
cHl4o)tyt<b,<cd(1+0)tyd,
cT1<l,<0,
since #,0,0; = 1. As ¢ is independent of y, this implies the truth of the lemma.
Corovrrary. There are also 0; satisfying
wl, < |0, —¥0,| <200,

¢%ﬂi<D0j [Za]—_—“ 1121 3; (21])4:(2> 1)]1
JSor some D = D(w,7,{).

This follows at once by putting
20/(2—30), 0/(2—30)

for ¥, w in the lemma and making a corresponding change in the value of D.

3. PRrROOF OF THEOREM 2

We now prove theorem 2. We first remark that if /* takes some value 4, for x,, ¥y, 2z,
then it takes also the values m3, (m = +1, +2, 43, ...) for (mx,, my,, mz,). Hence it is
enough to show that, given §> 0, the inequality

0<| f*|<é
is soluble for all /* in some neighbourhood of f other than multiples of fitself.
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PRODUCT OF HOMOGENEOUS LINEAR FORMS 79
We may suppose without loss of generality that ¢, = 0. We shall suppose further that
€, = max [¢; | >0,

this representing one of twelve possible cases, all of which can be treated in the same way.
We wish to find values of L,, L,, L, for which

O<|L¥L}L¥| <.

To do this we shall take L; = 77{*{; with fixed §; and choose m, n so that L¥, L¥ are roughly
equal to L,, Ly, while L} is much smaller than L,. We take for £, &,, {; any set of values
(fixed in all that follows) taken by the Z; such that

§1£2<03’
and put ¥=—epé&t (>0).

Thus, since &, 7, { are now fixed, an estimate of the type‘1ﬁ<¢* = ¢*(v) is equivalent to

one of the type

Now let 0, satisfy the conditions of lemma 2, corollary, and write L; = §;£;. Then
| ol | & | <] 6,8 +€120,8, | <200, | E, |.
| L | = | 6,61+ 6120585+ 6150545 |
= | 0181+€190585 | — | 150585 |
> oby | & | —D|£&1E | 440,
>0

Thus we have

if ¢ is small enough. Similarly
| L} | <3wb, [ £ |

if ¢ is small enough. Similarly, but more simply,
O<|Lf|<20;1§] (j=23)
for small enough ¢; and so finally
O<[LYLFLY [ <120 | £,66s |-

Since v is arbitrarily small, this does what is required.

4. PROOF OF THEOREM 3

The same type of argument enables us to prove theorem 3. It is easy to see that the
proof of lemma 1 also gives

Lemma 3. Let a, f, v, 8, A be constants such that a/f is irrational and ad—fy==0; then to every
7> 0 however small and o> 0 however large we can find integers m, n with
. |ma+nf—2A| <1, my+nd<-—o,
and integers m’, n' with
|m'a+-n'f—A]|<1, my+nd>o0.
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The argument by which we obtained lemma 2, corollary, from lemma 1, now gives, in
the notation of lemma 2:

LemMA 4. To any >0 and any ¢>0 however small correspond integers m, n such that
“ 60,< |0, — Y0, | <20, Oy<ef,
and also integers m, n such that
0, <|0,—y0,| <20, 0,<ebs.

To prove theorem 3 it is enough, as in the proof of theorem 2, to show that L, L} L¥ takes
arbitrarily small non-zero values. The case when L,, L¥, L¥ are linearly dependent is
trivial, since it is readily shown that the product of any three linearly dependent linear
ternary forms, at least one of which does not represent zero, takes arbitrarily small non-zero
values. Hence we may suppose that L,, L¥, L¥ are linearly independent and write

L¥ = ay) Ly +agy Ly+ay; Ls,
L¥ = a5 L, a3y Ly+ays Ly,
with " Q950337 AggUso.

We have now to distinguish cases. First we suppose that a,,a,5+0. We choose §,, £,, &,
values taken by L), Ly, Ls so that §;§3a5,a,;<0, and put L; = 6;§;. We regard the a;; and the
¢; as constants. Then if we choose §;, as we may by lemma 4, so that

60, <<| agp8y0y+ags€sly | <260y, | ay 0,8, | <ely, | 0,8, |<eb,,
we obtain, as in the proof of theorem 2,
Ll = 01551 =+ 0,

0<|L¥ | <3el,,
for small ¢. Further,

ags L = (a3,0,3 — g9 033) Ly+(ag3a3;—az3a,,) Ly +a55 LY,
where ;50,3 — a,5a5,==0, by hypothesis. Hence
| ays05 LY | > | a30093— 99035 | | £ | — | ag3a31—a3305, | € —3 | ags | ¢
>0,

if ¢ is small enough. But, trivially,
| LY | < D50y

for some D, depending only on the a;; and the §,, since 054, is bounded above and below
for small ¢, by construction. Since §,0,0; = 1 this gives
0<|L,L¥L¥|<3|&, | Dse,
which may be made as small as we please by suitable choice of e.
Renumbering if necessary, we need now only consider the case
L = ay Ly + a5, Ly,
LY = a5 L, +as3 L,
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with ay,a5540. If a,, = a;3; = 0, we have the excluded case of the theorem; thus we may
take a,, 0. We choose §,, £,, &5 values taken by L,, L,, L; so that §,£,a,,4,,<0 and put
L; = 0;&;. If we choose 0; so that

€0y <| @1 0,&,+ 50058, | <2605, | ag0,8, | <€, |0, | <ebs,
we obtain in the same way as above
0| L, LE LE | = O().
This completes the proof of theorem 3.

5. PROOF OF THEOREM 5

The proof of theorem 5 is now immediate. If there are infinitely many inequivalent sets
of forms of the type specified in the theorem, then there are infinitely many lattices of
determinant at most D, which are admissible for | X; X, X;|<1; and none of these is
obtainable from another by a trivial transformation X;—4;X;. By Mahler’s compactness
theorem (Mahler 1945, theorem II) the set of these lattices must contain a convergent
subsequence. By the hypothesis that A is false, the limit lattice of this subsequence, being
itself admissible for | X, X, X, | <1, must correspond to a product L, L, L; whose coefficients
are proportional to integers. But now we can approximate arbitrarily closely to this
product L, L, L, by inequivalent products L¥ L¥ L¥ derived from the subsequence; and for
these we have min’ | L¥ L} L¥ | >1. Since this is in flat contradiction with theorem 2, our
original assumption must have been false; and this proves theorem 5.

6. PROOF OF THEOREM 6
We now deduce theorem 6 from theorem 2. We suppose that there are ¢, § such that

| #(px—y) (yx—2) [=>0
for all integers x 0, y, z. Then clearly the lattice A in (X, X,, X3)-space with points

Xl =X
X, =¢x—yr (%,9,z integers)
Xy=vyx—z

is admissible for the region

| X, X, X, | <8, max(|X,]|, | X;|)<L.
Hence the lattices A® obtained from A by the transformation

X, »>22X,, X,»2X, X;—>2"X,
are admissible for the respective regions

| X, X, X, | <8, max(|X,], | X;]|) <2

Thus as n—>00 we can, by Mahler’s general compactness pﬁnciple, pick out a subsequence
of the A® tending to a lattice M, where clearly M is admissible for

| X, X, X, | <.

11 VoL. 248. A.
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Now, theorem 2 asserts in our present language that if the product X; X, X;, (X}, X,, X;)e M
corresponds to a multiple of a form with integral coefficients, then

min | X, X, X; | <8, (X}, X, X5)e M*, X, X, X,40
for all lattices M* sufficiently close to M. Hence the limit lattice M we have obtained is
admissible for | X, X, X; | <& but does not correspond to a multiple of a form with integral

coeflicients, i.e. we have found three forms L,, L,, L, satisfying A of theorem 4. This con-
cludes the proof of theorem 6.

7. PROOF OF THEOREM 7

Before proving theorem 7 we restate hypothesis C in what is really a dual form.
LemMmA 5. Let statement C hold. Then

min | yz(x+yg +z¢) | > 0.
v yz+0 ‘
We suppose lemma 5 is false and use a cunning device of Mahler’s (1939). Itis trivial that

x+yd+ zy =0 for any integers #, y, z not all zero. Hence given any ¢,>0, with say 0<<¢,<1,
we could find integers x,, ¥,, 2z, such that

0<|yozo(%o+Yof+2o¥)| = €<ty (7-1)
if lemma 5 were false. We make use of the identity
u(xo+YoP+20¥) + (v—up) yo+ (w—uy) 2y = xgu-+yov-+2zow = integer (7-2)

if u, v, w are integers. Hence, by Minkowski’s linear forms theorem, we can find integers

u, v, w such that ¢
Iv—u¢|<m (<1), (73)

0

o
IW—u¢|<Tzﬂ (<1), (7-4)

| %ou+yov+zow | < e yozo(%o+YoP+20¥)|
=1, (7-5)

since the determinant of the three linear forms on the left-hand side of (7-3), (7-4) and (7-5)
1S %+ Yo +2zo¥ by (7-2). From (7-5) we deduce

Xou+Yov+2zow = 0,
and so, by (7-2) again,

| u(to+ 908+ 209) | < | yolv—ug) |+ | zo(w0—up)|
<2¢. (7-6)
Hence by (7-1), (7-3), (7-4), (7-6) we have |
|u(v—ug) (w—uy) | <2,

where 0 by (7-4), (7-5) and since (u,v,w) (0,0, 0). Since ¢ is arbitrarily small, this
contradicts statement C. This contradiction proves the lemma, whose falsity was originally
assumed.


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PRODUCT OF HOMOGENEOUS LINEAR FORMS 83

- Wenow prove theorem 7. Suppose, first, that ¢ = ¢,, ¥ = ¢, belong to a totally real cubic
field and put L, = x+yé, +zy,, L¥ =y, L¥ = z. Then theorem 3 asserts that

min | yz(x+y$, +2¢,)| = 0,

“the minimum being taken over integers x, y, z such that
yz(x-+ydy +2¥,) +0.

Hence, by lemma 5, statement C does not hold for ¢,, ¢,.

Suppose therefore that ¢ = ¢,, ¥ = ,, where @,, ¥, lie in a real cubic field with con_]ugate
imaginary fields. Let L,, Ls, ¢, @3, ¥5, 5 denote the conjugates. Then there are conjugate
units 7; (j = 1,2, 3) of infinite order such that for any » the 57 L; are derived from L; by a
unimodular transformation of the variables with integer coefficients. Further #7% is real only
for n = 0, since the only real elements of K, are rational and the only rational units are 4 1.
Hence, by the one-dimensional case of Kronecker’s theorem there are integral n arbitrarily
large (of either sign) such that 7253 = (5,/7,)" is arbitrarily close to any given number on
the unit circle.

Since the forms L, take the values 1 they take the values L; = 7. On solving for %, y, z
in terms of L,, L,, L; we have a set of equations of the type

%= ¢ Ly+d\Ly+d, Ly,

y = Li+dyLy+dyLs,

z=c3Ly+dyLy+dsLs,
where ¢, ¢,, ¢; are real. We choose 7, as we may from the foregoing discussion, so that
L, = 57 is arbitrarily small and also so that | d,n3+d,7% || 73" | is arbitrarily small. Then

clearly
| yzL

|=l_y_ z
UL I

is arbitrarily small, as asserted.

8. PROOF OF THEOREM 4 v
We now turn to theorem 4. Suppose first that B holds. Then A holds (with L; = M)
unless M, M, M; were a multiple of a form with integer coefficients. But in this case theorem 3

would require that M, (M, + M;) is a multiple of M, M,—that is, that M, is a multiple of M3,
which is absurd. Thus B implies A.

To prove that A implies B we must first put the condition in A into a more useful form.
This is given by

LemMA 6. Let Ly, Ly, Ly be three real linear forms in x,, %y, %4 of non-zero determinant, each of
which represents zero only trivially. Suppose there is a transformation

:z: xé == }Etii“y
J

(other than the identity) with integers t,;, and constants c,, ¢4, ¢ such that

ijo
¢;>0, ¢663=1

‘md ' Lj (%15 %q, %3) = L; (xla X3, xs)

identically. Then there is a multiple of L, L, L, with integer coefficients.

11-2
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Suppose first that ¢, is rational. Then the identity in the lemma becomes

Li(tyy—c1s tors t31) = Ly(t12, tana—0C15 bsy) ,
= Ly(t3, ty3, t33—¢;) = 0,

in which all arguments are rational. Since L, represents zero only trivially, we have
by =lyy=1l33=0¢, t; =0 (i==5). It follows that ¢, = ¢, = ¢; = 1, and the transformation
is the identical one.

‘Thus ¢, ¢y, ¢3 are all irrational. Since they are the eigenvalues of the matrix (#,;) they must
therefore be conjugate cubic irrationals and in particular must be distinct. Thus the L;,
which are the corresponding eigenvectors, must be multiples of conjugate linear forms in
conjugate cubic fields, and this proves the lemma.

IfD = (d;) is a 3 x 3 unimodular matrix and A is a lattice, the set of all points (X7}, X3, X3)
where X = Xd,; X; and (X, X,, X;) e A\ is another lattice, of the same determinant, which
we denote by DA. Similarly, if Z is a point set we may define the point set DZ. We say that

A is taken into DA by the transformation D. Clearly
(D1D) A=D(DA), (D1D5) Z = D(D,2),

and A is admissible for Z if and only if DA is admissible for DZ.
Wewrite 1D = max (|dy—1], |dy ],

ijz

i

so that || D || = 0 only for the unit matrix. Mahler’s basic theorem on the compactness of
lattices may now be put in the form (Mahler 1946), theorem 2:

LEeMMA 7. Suppose that there is given an infinite set of lattices whose determinants have a common
upper bound all of which are admissible for some star body #. Then given ¢ > 0 we can find two of them
AD, A@ and a matrix D such that

A® =DAD, || D] <e.

We shall say that D is an automorph of A or Z if DA = A or DZ = Z respectively.

DErFINITION. We shall say that a real matrix D of determinant 1 is a transformer to
determinant A of a region % if there is a lattice N of determinant A such that both N\ and DA are
admissible for &.

We have at once

LemMa 8. If G, S, are automorphs of # and D is a transformer to determinant A of Z then so is
S, D6,.

For if A and DA are admissible for #, then A; = S3!A and (S, DS,) A; = S,(DA) are
admissible for S;12 = # and G, %2 = Z respectively.

LeMMA 9. Let D® = (dP) (k= 1,2,3,...) be a sequence of transformers to determinant A for
an (open) star body R, and let
(dy;) = D =limD®

k—>w
exist in the sense that d,; — lim d.

k—>o

Then D is a transformer to determinant A of Z.
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In the first place, D is unimodular since the D® are. Let A® be a lattice of determinant
A such that both A® and D®A® are admissible for Z. By Mahler’s compactness theorem
for lattices (Mahler 1945, theorem 2) we may extract a subsequence, also to be denoted by
A®, which tends to a limiting lattice A of determinant A. Clearly DA = lim D®A®,
Finally, both A and DA are admissible for #Z since # is open and they are the limits of
lattices A®, DOA® admissible for # (cf. Mahler 1945, proofs of theorems 8, 9).

In view of lemma 3 the proposition ‘A implies B’ of theorem 4 will follow at once from
the following assertion about lattices in three dimensions.

LEmMA 10. Suppose there is a lattice N\ of determinant A admissible for the region

Z: | X X,X;|<1
which has no automorphs of the type
'Xl'écl'Xi’ 6',->0, 010263 = 1

other than the trivial ¢, = ¢, = ¢5 = 1 (all these transformations being automorphs of #). Then %
has a transformer

1 0 0
DO = 0 1 0
011
to determinant A. : :

For if A, (say) has transformer D, then any point (X;, X,, X;) of A, other than the origin
satisfies | X; X, X;|>1, since A, is admissible and | X, X,(X,+X;) |>1 since D A, is
admissible, i.e. B is true. ‘

The proof of lemma 10 is now almost immediate. If A is given with determinant A we
consider the lattices A(n, ny, ng) derived from A by the transformation

X;—>2m X, (n;integral, n,4n,+n; = 0),
which is an automorph for Z. Hence, by lemma 7, given ¢>> 0 however small, there are two
of these, say A, = NoP,n,n) (k= 1,2),
and a transformer ® = (d;;) such that
A,=DA, |Dll<e.

If © were a purely diagonal matrix the lattice A would have as automorph X;-¢; X,
¢; = 2%"~"?d,;,, where at least one of the ¢; is not 1 if ¢<}; since then }<d;; <% and
(n{P, nP, nP) %= (0P, n§?, n?). Hence max |d;;|>0 (i=17) and one particular pair ¢, j must
give this maximum for arbitrarily small e. Hence, without loss of generality we may suppose
that there are transformers ® with || D || <¢ arbitrarily small and

|d32[=r_na‘txfdij|>0.
i+)

But now, by lemma 8, D* — G-1DS is a transformer, where
1 0 0
S=|0 sgndy,|dy,|? o |,
0 Y | dys |
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and it is easily verified that -

df =1+0(e),

=1,

df = O(et) otherwise.
Hence, finally, by lemma 9

1 0 O
Dy=(0 1 0
0 1 1
is a transformer, as asserted.

9. STATEMENT AND PROOF OF THEOREM 8
In this section we shall prove the following analogue of theorem 2:

Tueorewm 8. Let f(x,y,2) be a rion-singular indefinite ternary quadratic form with integer coeffi-
cients, and let (8,,8,) be any open interval however small. Then there is a neighbourhood of f such that
all forms f* in the neighbourhood which are not multiples of f itself take some value in the interval

(313 82) :

The reader will observe that we do not require that fshould represent zero only trivially;
thus the theorem will isolate x2+4yz as well as x2— 3y2—3z2. As in the proof of theorem 2,
we note that if f* takes some value 4, it takes all the values m2§, (m = 1,2, ...), and hence it
is enough to prove that f* takes a value satisfying

0<* <4,

and a value satisfying 0> VAT )

for any preassigned § however small, where the neighbourhood in which f* lies depends on 4.
No new point of principle is involved but the proof is more complicated, largely because
the group of automorphisms is less convenient to handle. We write

S (%15 %g, %3) - 2f % %
If g(#xy, %9, %) = Ngy;x;;
is another ternary quadratic form we say that f, g are orthogonal if
gﬂjg =0,
and we call g

the size of g. Thus any ternary quadratic form f* which is not a multiple of f can be expressed

uniquely in the shape
= (1+6) (f+eg) (6>0),

where g is orthogonal to f and has size 1. Further, a neighbourhood of f corresponds to
bounds on ¢, ¢,. As before, we can for convenience take ¢, = 0 and consider only

S* =f+eg.
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Clearly the definitions of orthogonality and size depend on the choice of the co-ordinate
system, which however we regard as fixed.t To prove the theorem, it is enough to find an
automorphy} U of the form fsuch that the coefficient of x? in

u(f+€2g)a

in an obvious notation, can be made less than any §>0 and of prescribed sign, provided
that ¢, is less than some constant depending only on f and 4. '

It is now necessary to discuss the automorphs of /. If 1 is an eigenvalue of an automorph
¥ then there is some linear form £ in the variables ¥,, %,, ¥, which becomes multiplied by A
when these variables are transformed by . This we shall call an eigenform. Suppose T
has distinct real eigenvalues A4;, A, 45, so that the corresponding eigenforms ¢, §,, £; are
uniquely determined except for scalar factors. If f= Xa;£;&;, then clearly 1,4, = 1 when-
ever a;;#0. Hence one of the 4, is 4-1 and the other two are reciprocals one of the other.
Thus by taking appropriate multiples of ;, &,, 5 and by taking T2 for T if need be, we have

S (15 %95 %3) = p2+0€p  (po=0),

for some linear forms &, 7, { and constants p, . Here T corresponds to

(= £, g2y,

for some constant A>1 which is irrational and lies in some quadratic field. Infinitely many
quadratic fields K do occur in this way for given f; for example, all fields ,/D, where D is
a positive integer (not a perfect square) such that —D is representable by the adjoint of f.

We now choose once and for all six such automorphs I, T, ..., T, of f, with eigenforms§
& m;> § (0<1<5) and distinct quadratic fields K;. By a suitable preliminary change of
co-ordinates we may suppose that

(fu=) @ =f(1,0,00>0>£(0,1,0) =a; (=f3),
and go(la 0, O) =0, =+0, 50(0, 1, 0) = 0.

LemMA 11. There is a constant ¢,> 0 depending only on f with the following property. To any g
orthogonal to f and of size 1 there is an ¢ = i(g) (1<<i<<5), such that when g is expressed in &, y,, ;
co-ordinates the coefficient of &2 is at least ¢, in absolute value.

The g of size 1 orthogonal to f form a closed compact set in the obvious topology, and the
largest among the absolute values of the coefficients of £? is a continuous function ¢(g) of g.
It is therefore enough to prove that ¢(g) &0 for all g. But ¢(g) = 0 means that g = 0 passes
through the five points 5, = {; = 0 (1<i<5), and these points are distinct since they lie
in distinct quadratic fields. Hence ¢(g) = 0 means that g = 0 has five points in common
with f = 0, or that fis a multiple of g. This is clearly impossible.

1 After a preliminary transformation to put fin a suitable shape to be discussed later.

I The term automorph, as applied to a quadratic form f, has its classical meaning, namely, an integral
unimodular transformation of the variables x;, x,, x; taking finto itself. If fis indefinite it can be written
(in infinitely many ways) in the standard form + f=L}—L,L, for some linear forms L,, L,, L;. The set of
values of L,, L,, Ly as x,, x,, x5 take integer values is a three-dimensional lattice A; an automorph of the form
corresponds to an automorph of A and vice versa in the natural way.

§ Of course the new §,, £,, £; must not be confused with those of the earlier discussion, which will not
reappear.
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LemMma 12, IfE,, 7,, {; are expressed in terms of £y, g, {, in the shape
£; = 7§ +etc.,
Ni= oo
Ci= .0y
then y,==0.

The point 7, = {, = 0 lies in K, but is not rational; for if it were rational we should also
have £, = 0, since ,, 5, are formally conjugate (as linear forms in x, y, z) in K,. Hence
o = § = 0 cannot imply §; = 0, since K is distinct from K,

Lemma 13. To any given 6,>0, my>>0, n,> 0 there is a o = ¥o(8;, my, ny) which depends only
on 8,, my, ny and the six fields Ko, K, ..., K5 with the following property. To any i = 1,2, ...,5 and

any ¥ satisfying 0 <y <y, there can be found integers m>mey, n>>ngy such that
140, <yA3mA?» <1+4-20y,
or again such that

The ratio InA,/In 4, is irrational since A;, A, are irrationals in distinct quadratic fields.
Hence Kronecker’s theorem applies, as in the proof of lemma 2, corollary.

We may now proceed to the proof of the theorem. We denote by ¢ a constant depending
only on the coefficients of the form f, and the transformations ¥ ;, not necessarily the same in
different contexts.

We first choose the index i by lemma 11 such that the coefficient £ of £7 in the expression
for gin¢,, 5,, {; co-ordinates satisfies

|£=¢>0.
By interchanging the roles of x,, x, and writing —f for f if need be, which does not affect
our preliminary normalization, we may suppose that

€, <0.
We propose now to find an automorph of the type
U=3r3Ir (m>0, n>0 integers)
such that the coeflicient of x2 in W(f+6,0)
is arbitrarily small and of arbitrary sign, provided that ¢, is initially small enough.
In the first place, the coefficients of £? in
g

in &, 7, {; co-ordinates differs from fA3" by at most ¢A?, and the remaining coefficients are
at most ¢A?. Hence on expressing T?g in &, 7,, {, co-ordinates the coefficient of £2 differs

from fy?A7" (y;40 from lemma 12) by at most ¢A?; and the remaining coefficients are at most
2n : 23
cA?. Hence the coefficient of £2 in g

in &, 7,, {, co-ordinates differs from
B

by at most ¢A2”A%, and the remaining coefficients are at most cAA?". Finally, the coefficient

5 -
of x? in Tr g
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expressed in x,, ¥,, x5 co-ordinates differs from
prraimazn
by at most CoAm A2 4-¢ o A2m A2,
where o, = §,(1,0,0)==0 by hypothesis, for some constant ¢, independent of m and n.
Hence finally ftepg
takes a value differing from ay+€,fy2 a2 A2m A2
by at most €5(Co AR A" +-cy AZmAT).
Let §>0 now be given arbitrarily small, and put
0 = a0y,
where, without loss of generality, we may suppose that
0<%
We recdllect that a,>0>¢,p.
First choose m,, n, so large that
colg ™ <ihyie3dy,
A< %/5’7?06?31-}
Now, by lemma 13 with a ¥ =—epfya} (>0),

we can find integers m>m,, n>n, so that
d<a,+e,py?a2A3m A" < 20,
or, again, ' —20<a,+e,fytaAdmA?r < —4,
provided that ¢, is small enough. In both cases we have
| eBy7 e A5 43" | <ay+20 = a,(1+24,),

and so the difference between a, +¢,/y?a?A%"A?" and the coefficient of x? is at most

CoAg" A+ A AF" < ay (1+20,) (30, +19,)

<$a,0, = 19,
since initially §, <}. Hence, finally, the coefficient 4 of #? satisfies either of the two equations
0<b<12

and o< —b<i®
respectively, for appropriate choice of m, n. This is what was requiring to be proved; since
d is arbitrarily small.

10. STATEMENT AND PROOF OF THEOREM 9
In this section we prove the following theorem:
THEOREM 9. The following two statements are equivalent:
D. There is an indefinite ternary quadratic form which is not a multiple of a form with integral
coefficients butt min’ | f(x,,2)| = 1.
E. There are ternary linear forms My, M,, M, such that
min’ {min | M3— M, M, |, | M3—My(My+ M)} = 1.

T We recall that min’ indicates the minimum over integers x, ¥, z not all zero.

12 Vor. 248. A.
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Since f can be put in the shape
+f=Li—L,Ls,
with ternary linear forms, an alternative form of D is
D’. There are ternary linear forms such that L — L, Ly is not a multiple of a form with integral
coefficients but min’ | L3—L,L,| = L.
We then have
SuPPLEMENT TO THEOREM 9. If D, E are true then the lower bound of det (L, L,, L,) equals

the lower bound of det (M, M,, M,).
We first show that E implies D (or D’). Suppose that E is true but D is false, so that both

ﬁ(xay: Z) = M%_M1M3

and &(%,y,2) :Mg_%(MI+M3)
are multiples of integral forms f, g say. Then there are constants A, x such that
J—Ag = pL3.

Hence A is a double root of det (F —A®) = 0, where &, ® are the matrices associated with
f,&;and so disrational. Further, A, being an eigenform of § —A®, is a multiple of a rational
form N, say. We may suppose that the coeflicients of N are integers without common factor
and so, after a suitable change of co-ordinates, that N = z. Hence

fx9,2) = Ni—N,z,
where N,, N, are multiples of M;, M, respectively and need not have rational coefficients.

However (Mo, 4, 0))2 = f(x,4,0)
has integral coeflicients, and so if
Ny(%,y,2) = ax+fy+7yz
the ratio «:/ is rational. Thus finally there are integers a, 4 such that
Sla,b,0) = {Ny(a,5,0)}> = 0.
Hence f, and so f; = M%— M, M,, represent 0 contrary to the hypothesis that E holds.
In the rest of this section we shall show that D implies E.

LemMa 14. Let f(x,, x5, %3) be an indefinite quadratic form not representing 0. Let there exist two
non-commuting automorphs of the type

T xp= D tux, det(ty) =41
k

with integral t;, each of which has three distinct eigenvalues. Then f(x,, x5, %5) is a multiple of a form
with integer coefficients. "

Let T be one of the automorphs with eigenvalues A, A,, 43, and with eigenforms &, &,, &;.
As in the preceding paragraph we may assume that the roots are A, =4, 4, = 4+1, 1; = A"
Since A, 7! are both roots of det (T—AJ) = 0 (J=unit matrix) they are algebraic units
and so lie in some quadratic field since A;, 1,, A, are distinct. We may thus suppose without
loss of generality that £,, being an eigenform of T —A,, has rational coefficients and that
the coeflicients of £, £, lie in a quadratic field and are conjugates, so that §,£; has rational
co-ordinates. Hence, as in §9, we have

f(xls X9y xs) = P§%+0'£1£3:
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where p, o are real numbers and £3 and &, £, have rational coeflicients. Here T makes the
transformation

&> A8;-

If T* is another such transformation with distinct eigenvalues A¥, ¥ = +1, Ff = A¥~! and
eigenforms £¥, £¥, £¥ it is clear, and well known, that T* commutes with ¥ if and only if
the £¥ are multiples of the £; in some permutation. Hence under the hypothesis of the lemma

we have : ‘
Sy, 295 %3) = pE3+ 08, &5 = p*EF*+ o *EFEY,
where in particular £} is not a multiple of £,; and both are forms with rational coefficients.

Hence we may choose a rational unimodular transformation x; = Xs;,x, such that £, EF
are multiples of x}, x; respectively. After a suitable co-ordinate change we may thus assume

that
— .2 — ka2 *
Sy, %9, 25) = praf+0& &5 = pTaf+o*EFEs,
where p,, p¥, o, 0* are real non-zero numbers and £, £,, £ £F are quadratic forms in %), x, ¥
with rational coefficients. Hence, by comparing the coefficients of #2, x§ on both sides,

we see that
,01/0*, IOT/U

are both rational. Since f is non-singular one of the terms x, %3, x,%3, ¥3 must occur in f.

Hence, by comparing coefficients, we see that
I ‘ alo*

is rational. Thus finally p, /¢ is rational ; and so fis a multiple of a form with integral coeffi-

cients, as asserted. This proves the lemma.

We must now discuss the translation of our problem into the language of the geometry
of numbers. If L;, L,, L, are three linear forms of determinant A then

S=L3—L L,
is an indefinite quadratic form of determinant }A2 Conversely, if f'is an indefinite ternary
quadratic form then 4 f=13—LL,

for some linear forms L,, L,, L,. This may happen in infinitely many ways but if |

L3—L,Ly= L~ L{ L},
the L} are expressible as ,
L} =Zt;L; (¢ real),
where T = () is an automorph of X3— X, X;; and conversely.

We shall be concerned with automorphs of X3— X, X; of the special type

a2 20 P2
S: |ay ad+py PO
y: 295 62

associated with a 2 x 2 unimodular matrix

@, f |
S ( ’ ),v ad—fy =+1.
, 0 |
t This corresponds to the invariance of the discriminant of a quadratic form under unimodular trans-
formation. It may be shown that all automorphs of X3— X, X; with determinant +1 are of this type, but
we do not need this.

12-2
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We always use the prime (’) to denote this correspondence between S and &’. The eigen-
values of S are +1 together with the squares of those of &'. In particular

(8:6,) =316 : (10-1)
and S, =6, ifandonlyif & =+G&;. (10-2)

In particular, G,, S, commute if and only if '
SS; = +6,8.. (10-3)

We also reintroduce the notation (§ 8)
1D :r?_:’:aj"x(ldii—.l B ldijl)a (10-4)
and extend it to matrices &' by putting

S| = max (Ja—1|, |11, [A], |¥])- (10-5)
Clearly | [Sl<cllS|l (10-6)

if |S'[|<1 (say), where ¢, as in future, denotes an absolute constant, not necessarily the
same in all contexts. Further, if || S || is small then one of the two values of &' also clearly
has small || &’ |, and, indeed, with the correct choice of &,

1S <clIS || (10-7)
if [|&S]| is less than some constant; as may readily be verified. We also note the trivial
inequalities D, D, ||<e(| Dy 1HID, ) I Dy II<L [ Dll<L (say), (108,)

-and 1DH<clI Dl (10-8,)

provided that || D || is less than some absolute constant.

We first translate lemma 12 into the new language.

LemMmA 15. Let A be an admissible lattice for the region

L | X3—-X X <1

and suppose that N\ and & have two common non-commuting automorphs, each with three distinct
eigenvalues. Then N corresponds to a multiple of an indefinite quadratic form with integral coefficients.

In view of the previous lemma, to show that D implies E and so complete the proof of
theorem 9 it is enough to prove the following lemma:

LEmMA 16. Suppose that there exists a lattice N\ of determinant A which does not have two non-
commuting automorphs of type S each with three distinct real eigenvalues. Then

1 0 1\
01 0
0 0 1

is a transformer to determinant A.
For if A and & do not have two non-commuting automorphs then a fortior: they do not

have two of the special type &.

Lemma 17. Under the hypothesis of lemma 16 there exist transformers D to determinant A which
are not of the type S but have arbitrarily small |D ||.

Suppose first the A has one automorph &,, where

si=(; == )
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By considering S, with automorph S,S;&;! for suitable S, instead of A if need be, we

may suppose without loss of generality that
afyd==0.

Now let ¢>0 be arbitrarily small and let S, correspond to

6'"‘(2 O)
27 o 1)

By lemma 7 and (10-8,) there are integers n, m with n--m>m>0 and a matrix D with

| D ||<e such that DSprA — SpA.

Hence to prove the lemma it is enough to show that ® is not an &, since it is clearly a trans-
former to determinant A. We suppose that

b, = 63
and deduce a contradiction. By (10-7) we have
, (1+ 0()  0) )
63 = D
O() 140(e)
where the constant implied by the O is absolute. The lattice A clearly has the automorph
S, = "S55,
., (27m 0\ /[140() O(e) \/[2mn 0
where Sy = ) (
0 27\ O(k) 140()/\ 0 2 mmn
_ (2"{1 +0(e)}  O(272mn¢) )
o) 2714+ 0(e)})’
so G, has three distinct real eigenvalues if ¢ is small enough. Further, $;S;+ +&;S] if
¢ is smaller than some ¢,(a, £, 7, §) >0, since the top right-hand elements of ]S, and S;S;
are respectively a2-2m-10 (6) -+-2-"4{1 + O(e)},
24{1+ 0(e)}+02-2m-0(e);

and f=0 by our preliminary transformation. Hence A has the two non-commuting auto-
morphs S,, S, contrary to hypothesis. Hence D is not an G and the lemma holds in this’
case.

If, however, we assume that initially A has no automorphs &, then the foregoing line of
argument, omitting all reference to &, constructs an automorph &, unless there are trans-
formers © with arbitrarily small || D ||. This proves the lemma.

Lemma 18. Under the hypothesis of lemma 16 there are indeed transformers ® = (d,;) to deter-
minant A not of the form S, with

diy=dsp =0, dyy=d
and arbitrarily small || D ||. 12 = O3 11 = l33

If D is a transformer with small || D || but not an S then

D*F=5,D


http://rsta.royalsocietypublishing.org/

A A

A\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

94 J. W. S. CASSELS AND H. P. F. SWINNERTON-DYER

will have the same properties if || S, || is small, since the & are a group under multiplication
and (10-8,) holds. Suppose that D with || D ||<e is given by lemma 17 and try to choose

S,;, where Cfa B
. ( 3)’
so that D* satisfies the conditions of lemma 15. We have to choose «, f, 7, ¢ so that
ad—py =1 (10-9)
and dfy = a’d,y+ 2aydyy+y%ds, = 0, (10-10)
df, = %5+ 200dy,+ 82%dy, = 0, (10-11)
dfy = oPdyy +20ydy, +y*ds,
= [2d,5+2f0dy5+ 62dy5 = dsf. (10-12)

Puty = Aa, f = pd. Since |dy,—1|<e, | diy| <e, | dsy | <& we can choose 4, x such thatf
[ A ] <ce, |p|<ce,
and (10-10), (10-11) are satisfied, provided that ¢ is small enough. The equations (10-9)

and (10-12) now become (1 =) = 1
and @?(dyy + 21dy) +A2dsy) = 0%(ds3+ 2udos+pdy5).
Since 1—2u=1+0(e) = 1+0(e),

dyy +2Ady, +A%dy = 1+ 0(e),
dy3+2udys +pPdyg = 1+ 0(e),
we may clearly satisfy these equations with

|a—1]<<ce, |6—1]|<ce.

Hence 1S I<ee,
and consequently 1S, ||<ce
and [D*[[<e(l DI+ [S; [I) <ee

by (10-6) and (10-8,). Since ¢ is arbitrarily small, this does what is required.
Lemma 19. If D is as in lemma 18, then
max (| d11‘|'2d22+d33 bl disls [dor |5 [dog s [dsy ) = IDI+O(IDIP),

where the constant implied by O is absolute.
Since all the d;; which are not zero (i< ) occur on the right-hand side it is enough to

ShOW that I d12-2d22+d13 I == max ! dzz——_]‘ l+ O(“ Q ”2)'
Put dll = d33 =1 +b\l> d22 = 1+32‘ Then
1= detb = d11d22d33+0(“ D “2)
1128, +8,+0(| D).

1 We remind the reader that ¢ is an absolute constant, not necessarily the same in different contexts.
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Hence 8, = —28,+ 0(ID[P);

and the result is immediate.
Lemma 20. If Aj (0<<j<<4) are any five numbers and
JB) = Ao+ 4,8+ ... + 4,84,
then max | 4; |[<cmax | f(f)| (f=0,+£1,+2).
Jj
JSor some absolute constant c.

For the A; can be expressed in terms of the f{f) by linear equations with constant
coeflicients.

LEemMA 21. Under the hypothesis of lemma 16 there are transformers D not of type S with arbitrarily
small || D || and

ID <0 dyg |-
If D is given by lemma 15 with || D ||<¢ we show that
D* =5,D05;5,
her 1
- 5-(, )
0 1
will do what is required, for suitable § = 0, -1, +2. Indeed, in the first place
[D*[[<c]| D] (10-13)

for each f, since D differs from the unit matrix by terms at most ¢ in absolute value. On the

Other RN,y — g 2+ (dyy — 2y + o) B+ 2y o

and so 1D]<c|d¥| (10-14)

by the two preceding lemmas if § is suitably chosen from 0, +1, +2. Hence, by ( 10-13),

(10-14), we have Hb*llgcldﬁils

where || D* || and | d¥ | may be arbitrarily small. We note that D* is not the unit matrix -
since it is not an &, and hence that d,;=0. '

The proof of lemma 16 is now almost immediate. Let D = (d;) be given by the last
lemma and let | d;;| =¢, so

|du—1]<ce, |dyl<ce (ij)-

Then |dis]"F 0 0 |dys|[¥sgnd; 0 0
D*= 0 1 o0 |D 0 1 0
0 0 |dyf Y 0 |dy|*sgnd,

is also a transformer by lemma 5 (since the first and last factors are S’s). Clearly
|d¥—1]<ce, dfy=1,
| df| <cet otherwise.
Finally, the limit 1 01
01 0
0 0 1
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is a transformer to determinant A by lemma 9. This concludes the proof of lemma 16, and
so of theorem 9. ,
11. STATEMENT OF THEOREM 10

Just as theorem 5 was deduced from theorem 2, so the following theorem may be
deduced from theorem 8. We suppress the proof, which is virtually identical.

THEOREM 10. If statements D, E are false, then to any D, however large there are only a finite
number of inequivalent indefinite ternary quadratic forms f with determinant at most D, such that

min’ | f| = 1.

APPENDIX A

With his permission we give here Professor Littlewood’s proof that

lim n!*¢ | sinwgn sinmyn | = oo
n—>0

for all ¢>0 and almost all ¢, ¢.

Choose {>0, >0 so that
(1+8) (1—p)~t = 1+e,

and put 89 =3 !

1!+ | sinmgn sinmyn |17

so that 0<<f(¢, ) <co. Then clearly
? nl+é sin7g sinmy |17
JJ 70918995 = (355 ] s s s) <=

0<p<1
o<y<1 0<¢<1

and so f(¢, ¥) <co almost everywhere. But f{¢, ) <oo implies that

n'*¢ | sinwgn sinwyn |17 o0,

and so nl*e | sin wgn sin myn | o0,
as asserted. '
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